Anyone who does not know what Latent Heat is will have a false sense of security. It is not hard to understand if I do not use physics jargon. Place on a hot stove a pot of cold water containing 1 kg of ice cubes. Stir the ice water with a long thermometer and take temperature readings. My question is: When will the thermometer begin to show a rise in temperature? Answer: After all the ice has melted. In other words, all the heat from the stove would first all go into melting the ice, without raising the water temperature. The amount of heat entering a system without raising the temperature of the system is called Latent Heat. It takes 80 calories of heat to melt one gram of ice. So in this case, the first 80,000 calories of heat from the stove went into melting the 1 kg of ice first. Only when the ice is all gone will the water temperature rise, and it will do so until it reaches 100C, when the water will begin to boil. Once again, Latent Heat comes into play, and the water temperature will stabilize at the boiling point – until all the water have changed from liquid to vapour, at which point the temperature of the dry pot will rise to the temperature of the flame itself. So how does this apply to Earth’s climate? Consider the Arctic Ocean to be a gigantic pot of ice water, and the sun as the stove. For as long as there is still sea ice to melt, the Arctic Ocean will remain relatively cool, in spite of the ever increasing solar heat entering the Arctic ocean due to ever decreasing ice cover. When the sea ice is gone in the summer, as early as the latter part of this decade, the Arctic Ocean’s temperature will steeply rise, and when it does, so will the global mean temperature, and all hell will break lose (sic).

via Climate-Change Summary and Update – Nature Bats Last

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s